

Kiwa PVEL Breaks It Down

Understanding the Impacts of Cell Cracks & Glass Breakage

Tristan Erion-Lorico Kiwa PVEL

creating trust, driving progress

Kiwa PVEL is the Independent Lab of the Downstream Solar Market

12+

Years of experience

700+

Bills of materials tested in the lab

400+ Downstream partners

Services at a glance:

- Extended reliability and performance testing for PV modules
- Batch testing of PV modules
- Outdoor testing of PV modules, inverters and energy storage
- Data services for PV buyers and investors

See more details at kiwa.com/pvel

Our mission is to support the worldwide solar and energy storage buyer community by generating data that accelerates adoption of solar technology.

Cell Cracks – Outdoor Study

- In 2023, Kiwa PVEL received a US Department of Energy grant to study the performance of modules with and without cell cracks.
- Modules are automatically individually IV curve traced throughout the day.
- A variety of modern modules (8 unique BOMs) were admitted to the study; mostly TOPCon, with some PERC and HJT. Examples of very cracked modules:

the.	XXX	XIIX		Alt -	V.
Are	X	. 21	:	XX	
		XXX	XX		X
i ferfi		246	X83	XX	K
porte	MY.	XX	XXX		X
	XXY			VXXX	
Ait		×			Alter
·XX	M		AX.	AN C	XX
	XX	X	Y V.p.	XX	XX
XX	XX		AX	XX	XXX
	XX			XX	X
X			1XA	A	$K \land$
	-				
		X	XX		
	XXX	XX	XX		AY
X		XX	XX		
X		XX	XXX		AN AN
X		XX	A A A A A A A A A A A A A A A A A A A		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
		XXX XXX XXXX	X		

X		The second second		X
X	X	X	X	XX
XXX	AN AN	S		1
X		N.		M.
7.	1.4.	M.		×
		X	X	X
X			XXV.	
X				X

X			XXXX

Cell Cracks – Results So Far

- Voc and Pmp loss rates are similar for modules with and without cracked cells.
- Voc loss rate for TOPCon and PERC BOMs is less than 0.5%/yr thus far.
- However, many modules exceed 2% power degradation in first year (even control samples).

Broken Modules – No Shortage of Examples

- As will be reported in the 2025 PV Module Reliability Scorecard (<u>www.scorecard.pvel.com</u>):
 - **20% of BOMs** undergoing the PQP's Mechanical Stress Sequence experience broken glass or frames.
 - 40% of manufacturers experienced at least one failure during MSS testing

Broken Modules – Possible Causes

- Kiwa's analysis of broken modules from the lab and field supports NREL's recent work¹ on this topic.
- A range of possible causes have been identified:
 - reduced glass strengthening
 - flaws within the glass edge and junction box mounting holes
 - weaker frame designs
 - more aggressive module mounting
 - contact between the glass and frame
 - laminate edge pinch
 - larger module areas

flaws

¹ <u>https://www.nrel.gov/docs/fy25osti/91695.pdf</u>

Thanks for your attention

Visit us at booth A3.216 and head to <u>www.scorecard.pvel.com</u> on June 4, 2025

creating trust, driving progress

